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Abstract

Social choice is the study of aggregating information from individuals to form a group decision. Value alignment is the task of aligning the behaviors of artificial intelligence (AI) with the values of humans and possibly other sentient entities. Given there is no universal agreement among even humans on ethical values, social choice is a necessary tool to address the value alignment problem. This chapter reviews important results in social choice, including Condorcet’s paradox, Arrow’s theorem, May’s theorem, Condorcet’s jury theorem, the Rae-Taylor theorem, and Sen’s paradox. Additionally, this chapter uses approval voting and the four stage sequence of John Rawls and Kenneth Arrow to provide a framework for using social choice for value alignment. Furthermore, this chapter examines the work of Nicolas de Condorcet, the eighteenth century French mathematician and philosopher who was arguably the first to mathematically model an intelligence explosion hypothesis. Examination of his mathematical and political philosophy writings provide a starting point for a discussion on what background conditions should exist when voters vote to align the behavior of an AI. Specifically, his work suggested that there should be institutions which maximize the number of voters who are honest, altruistic, knowledgeable, and independent thinking. [197 Words]  

1.1 Introduction

“There is simply no way for AI designers to successfully abstain from ethical decision making.” – Seth D. Baum (Baum 2017, 14)  

Social choice theory is the study of taking information from individuals and aggregating it into a group decision.
 Any serious examination of the value alignment problem (e.g. ensuring artificial intelligence (AI) behavior coincides with human values) will have to take into account input from humans at some point to create values that guide an AI; so knowledge of social choice is indispensable in the study of human AI value alignment. 


While social choice arguably provides a means of offloading most normative questions about the ethics of AI behavior to humans (and to possibly other sentient entities), some aspects of such ethics will have to inevitably be built into the AI by its designers. This chapter provides a review of the literature and a framework for minimizing the imposition of the designer using social choice, while ensuring that designers are transparent and explicit about: why they must make an imposition, what possible options are available, why they choose a particular option, and how such an option is implemented.  

Our framework makes use of approval voting, which is a voting system where each voter marks each alternative she is willing to consent to, and it chooses an alternative that the most voters consent to (i.e. consent maximization). Roughly speaking, this chapter argues that consent maximization is the norm that should guide aggregation of individual values at the highest level of group decision-making for AI. Under appropriate background conditions, the norms guiding lower levels of AI decision making can be almost any norm, so long as the norm was chosen by higher level decision making.  In making this argument, the chapter covers some of the most important results in social choice, and can serve as an overview of the field, even if one disagrees with the argument. Additionally, this chapter discusses the seminal work of Nicolas de Condorcet, the 18th-century mathematician who was arguably the first to posit a mathematical model for an intelligence explosion. Condorcet’s work provides a starting point for discussion about appropriate background conditions under which social choice aggregation should occur.

The rest of this chapter consists of three parts prior to the conclusion. The first part covers motivations (for using social choice to address value alignment) and a review of the social choice and value alignment literatures. The second part provides a framework for using social choice to govern a smarter-than-human AI, though it also offers insights on social choice governance on regular AI. This second part will go over in detail many important results in social choice, including Arrow’s theorem, May’s theorem, and Condorcet’s jury theorem. The third part examines the work of Condorcet as a starting point for a discussion regarding background conditions under which social choice should be used for value alignment.

1.2 Motivations & Literature Review
1.2.1 Motivations

As time passes, we may expect to see more and more decisions being automated and delegated to AI. It is already happening with high frequency trading and self-driving vehicles. Given that so much information, money, and life are at stake, we should hope that AI behaves in a manner that aligns with human values. This is especially true of a hypothetical generally smarter-than-humans superintelligent AI (SAI), especially if an SAI becomes a singleton (i.e. the only SAI), as Nick Bostrom argues (Bostrom 2014). 


Ariel Cohn, who provides a review of the value alignment problem, defines the value alignment principle as: “Highly autonomous AI systems should be designed so that their goals and behaviors can be assured to align with human values throughout their operation” (Cohn 2017). But how can we align the behaviors and values of AI given that different people have different ethical values? More generally, it is extremely rare for some alternative (e.g. value or action) to Pareto dominate
 all other alternatives under consideration. As such, given that an AI may choose an alternative which upsets some individuals, how can an AI choose an alternative while minimizing the risk of legitimacy
 concerns?


If an AI designer seeks to create an AI that aggregates individual opinions into a social opinion that guides the AI in decision making, the designer of the AI cannot avoid normative questions. For the sake of analogy, consider United States presidential elections. In the 2000 and 2016 US presidential elections, the candidates with the most popular votes lost. Some viewed this as a failure of the US Electoral College (which chooses the US president) to function properly. However, from another viewpoint, the College worked as designed. The creators of the United States constitution sought an election mechanism which respected both the norm of popular equality and the norm of equality of states;
 in that vein, to ensure small (population) states joined the United States, they guaranteed that the presidential election mechanism would give the opinions of small states greater weight per capita than large states. Given that the 2000 and 2016 elections arguably respected both popular and state equality, one could argue the College behaved as designed.


The point of this case is not to contend that respect of popular equality alone is inferior or superior to respecting both norms. Rather, the assertion is that different sets of norms can lead to different aggregation procedures which can lead to highly differing outcomes. The same applies to AI applying aggregation procedures to the opinions of individuals to make group decisions on behalf of the individuals. This is why in designing AI that uses aggregation of individual opinions, it is important to consider the different norms that voting systems represent, as this is an unavoidable problem as (Baum 2017) makes eminently clear.  

1.2.2 Literature Review


While there were significant contributions to social choice by Ramon Llull, Nicholas of Cusa, and Charles de Borda prior to Nicolas de Condorcet’s work, Condorcet’s contributions from the 1780s and 1790s are the first truly comprehensive examination of social choice. Thereafter, with few exceptions (including the work of Lewis Carroll), social choice largely remained dormant until the mid-20th century with the revival stemming from the work of Duncan Black and Kenneth Arrow (Mclean and Urken 1995). 

Since (Arrow 1963), there has been continuous research in social choice. Informally speaking, Allan Gibbard and Mark Satterthwaite demonstrated that virtually all practical voting systems are not strategy-proof (Gibbard 1977; A. D. Taylor 2005). In other words, for virtually every voting system, there exists some incentive for some voter to misrepresent her opinion. This led to the development of the mechanism design literature, which seeks to design mechanisms that achieve some objective function given that players (e.g. voters) may attempt to misrepresent their sincere beliefs. The best overview of social choice at this time is probably the two volume Handbook of Social Choice and Welfare (Arrow, Sen and Suzumura 2002; Arrow, Sen and Suzumura 2011).

An outgrowth of social choice has been computational social choice. It has arisen for at least three reasons. First, calculation of winners for elections for some voting systems is computationally intractable under some circumstances; this has led to efforts to measure their computational complexity and create approximation algorithms. Second, given voting systems are usually not strategyproof, there is research that seeks to understand the computational complexity of finding optimal voter strategies for voting systems. Third and perhaps most importantly, social choice became useful to multiagent AI systems research, as such systems seek to aggregate information from many AI agents to form collective decisions for the system. The best overview of computational social choice at this time is the Handbook of Computational Social Choice (Brandt, et al. 2016). 

As mentioned before, (Cohn 2017) provides an overview of issues that intersect with value alignment. We are primarily interested in how the value alignment problem and social choice overlap. The work at this overlap, relatively speaking, has been sparse, but has recently gained significant interest. Two works standout. One is “A Voting-Based System for Ethical Decision Making”, which seeks to present and implement a general approach for AI to use social choice to make ethical decisions (Noothigattu, et al. 2017). The other is “Social Choice Ethics in Artificial Intelligence”, which asserts that there are three categories of ethical issues where AI designers must make ethical decisions even if the designers seek to use social choice to build the AI’s ethics (Baum 2017). We summarize these two works here.

(Noothigattu, et al. 2017) notes that some have recently put forth the arguments that social choice can potentially help AI solve ethical dilemmas (Greene, et al. 2016; Conitzer, et al. 2017).
 Importantly, (Noothigattu, et al. 2017) offers a general theory of implementation of social choice to solve AI ethical dilemmas at runtime, which they evaluate and instantiate in the context of autonomous vehicles. 

Their approach consists of a four step process: data collection, learning, summarization, and aggregation. Data collection entails asking humans to compare multiple alternatives, where the alternatives are determined by a vector of features relevant to the potential ethical dilemma at hand. Because the number of logically possible pairs of alternatives grows quickly as the number of features and alternatives increases, each human is only asked to make a few comparisons on some subset of possible pairs. They make up for this by asking a very large number of people to vote. The second step is to use machine learning to estimate the preferences of each voter over all possible alternatives.  The third step consists of combining the preferences of each voter into a single model summary which approximates the collective preferences of all voters over all alternatives. The fourth step, aggregation, is the only step which is performed at the time the ethical dilemma is presented in the real world. Specifically, the preferences of the subset of relevant alternatives in the summary is aggregated at runtime to resolve ethical dilemmas as they arise. (Noothigattu, et al. 2017) argue that the aggregation procedure used should be one that belongs to the class of swap-dominance efficient voting rules. They give a formal definition of such a rule, but roughly, such a rule re-emphasizes the importance of traditional social choice normative conditions.

(Noothigattu, et al. 2017) is an important contribution as it concretely describes how to implement social choice so AI can implement solutions to ethical dilemmas at runtime. In addition to the concerns they addressed, future research on implementation should address the possibility of strategic voters and the highly related issue of independence of irrelevant alternatives (IIA).
 It has been extensively shown that gaming of voting systems and IIA are highly intertwined in the sense that voting systems that violate IIA are much more susceptible to being strategically manipulated (Patty and Penn 2014, 48-64). Future research could also compare and contrast potential algorithms that could be used for learning and those that could be used for summarization.
(Baum 2017) takes a different approach and focuses less on the nuts and bolts of implementation, and more on general issues of concern. (Baum 2017) notes that there is rising interest in offloading AI ethical decision making onto humans via social choice, because AI designers do not wish to impose their values onto the AI users. But what (Baum 2017) importantly argues is that even if such designers use social choice to develop an AI’s values, the designer cannot avoid making and imposing normative judgments into the design of the AI. 

(Baum 2017) contends that there have been two important schools of thought on how to use social choice to create an AI’s values: coherent extrapolated volition (CEV) and bottom-up ethics (BUE). Roughly, those who argue for CEV contend that there is a good chance that if humans were as intelligent as an SAI, then humans would have different ethical values than those which they currently espouse; thus, an SAI should take the current values and knowledge of humans (and if necessary, other relevant sentient entities), extrapolate what the values of those individuals would be if they were as intelligent and knowledgeable as the SAI, and then aggregate those extrapolated indivdual values into social values and behaviors (Yudkowsky 2004; Muehlhauser and Helm 2012; Bostrom 2014). BUE holds that an AI should learn its values as it encounters ethical dilemmas, by aggregating the opinions of other ethical agents, similar to how children learn ethical values and behavior (Allen, Varner and Zinser 2000; Allen, Smit and Wallach 2005; Wallach, Allen and Smit 2008; Wallach and Allen 2008). 

Regardless of whether the motivation is CEV or BUE or some other line of reasoning, (Baum 2017) asserts that there are three sets of decisions that an AI designer cannot simply offload onto the AI to figure out on its own. These are issues of standing, measurement, and aggregation. 

For (Baum 2017), standing regards the issue of who or what should be in the group of entities that has its values affect the AI’s behavior and values. The term standing is drawn from legal and democratic theory. For example, in most democratic countries, virtually all adult citizens have standing in the sense that all are allowed to vote and thus potentially affect the values and behavior of the country’s government.
 However, even in such countries, there are debates about what is the minimum age for adulthood, and about whether felons should have standing. The same debates may also apply to standing with respect to affecting an AI’s behavior and values, but the concerns of standing with respect to AI go even further. Should sociopaths, who regularly take pleasure in other sentient entities suffering, have standing? Do children, who are sentient and capable of having and expressing some reasoned ethical values, have a right to standing? What about sentient animals, which might not be able to express, but may still possess, ethical values? What about non-senitent life (i.e. life incapable of emotions, affect, pain, or pleasure) which might include any life without nerve cells (e.g. plants, bacteria, and even possibly viruses)? If we were to discover extraterrestial life, should it be granted standing? What about future generations of life which do not currently exist but may in the future; would we want future generations of humans to be condemned to the opinions of presumably less knowledgeable current humans? If humans become augmented in ways that radically change human biology (i.e. posthumans), would such posthumans be granted standing in determining AI behavior and values? Finally, what about AI? Typically, AI is able to be multiplied many times over very easily and quickly in a manner that can create a population of AIs much larger than human population; if such AIs are sentient, what standing should AI have in determining the behavior and values of other AI? Additionally, even if such AIs are not sentient, one might contend that an SAI ought to have standing because it may reason and know much more than humans, and thus could potentially make better ethical judgments. These are all questions that need to be answered. 

The second issue (Baum 2017) addresses is measurement. There is no universally agreed upon framework for measurement of ethical values. First there is the issue of how to measure? Is it done by voting? Is it via buying and selling within some economic market? Is it thru surveys, interviews, or public opinion polling? Is it via brain imaging? Second, what do we measure?  Beliefs? Emotions? Behaviors (also called revealed preferences)? Third, under what conditions do we measure? For example, do we measure input from individuals in isolation or in a group setting (e.g. individual reflection or a focus group where individuals deliberate together)? Fourth, how do we take into account the effect of time on values? For example, how do we discount the utilities of future events? Is it okay to include institutional decision making “nudges” to produce “better outcomes” in the long-run?
 Fifth, for individuals who may not be able to represent themselves (e.g. institutionalized persons, children, animals, other life, future generations, posthumans, AI, and the dead
)  how do we measure their values?  

The third issue that (Baum 2017) covers is aggregation. We will go over this issue extensively, so we do not address most of it here, but there are a couple of aspects worth mentioning now. One aspect to keep in mind is how do we aggregate different kinds of information? This is especially the case if we try to aggregate information from different species or AI or beyond present time. Two, while in most social choice research, it assumed that a voter’s opinion on a particular alternative can be represented with a single value (e.g. some real number), it may be the case that we wish to treat the relationship between a voter and an alternative as one where the voter assigns multiple values to each alternative. If this is the case, this can affect the aggregation problem; this problem is partly addressed in the multiple-criteria decision-making literature. 

1.3 A Framework    


What follows is a proposed normative framework for governing an SAI. That said, the same framework can potentially apply to regular AI at a less grand scale. In this part, we will assume that the aspects of the standing issue have been resolved. We will focus here on measurement and aggregation issues. In the next part, when we discuss Condorcet, we will return to the issue of standing.


In discussing our framework, we proceed in the following manner. We discuss how imposition is virtually inevitable barring some alternative Pareto dominating all other alternatives. Thereafter, we introduce the four stage sequence heuristic and risk aversion principle to make the democratic imposition problem tractable. Subsequently, we distinguish between social choice and mechanism design, we argue against using non-deterministic voting as a norm at the highest levels of decision making, and also argue against interpreting decision making at the highest level as a game. Then, we formalize the meaning of a voting system, and describe various impossibility results including Condorcet’s paradox, the intransitivity of supermajority preference, and Arrow’s theorem. Afterwards, we discuss normative characterizations of majority rule on two alternatives (including May’s theorem, Condorcet’s jury theorem, and the Rae-Taylor theorem) and demonstrate how each of these theorems can be generalized to multiple alternatives, sometimes uniquely, with unrestricted non-polychotomous voting (UNV), a voting system which is similar to approval voting. Finally, we examine four ways to formalize and interpret consent maximization, and review existing mechanism design research and practice of approval voting.     
1.3.1 The Democratic Imposition Problem



Suppose there is a group of sentient entities, and the entities must make a decision and they want the decision to be a democratic one. They want to use an election to make the decision; however, they realize that different election methods can arrive at different decisions, even with the same underlying preferences. First, if they wish to be democratic, they must democratically decide how to democratically decide. Because different election methods lead to different results, and if they want to remain democratic, they have to democratically decide how to democratically decide how to democratically decide. Of course, if they wish to remain democratic, this becomes an infinite regress. The only democratic way to break this infinite regress would be if at some point in the regress, some alternative Pareto dominated all other alternatives. However, in a large pluralistic society (where different voters have different sets of values), this is highly unlikely, and barring an unlikely Pareto domination, some decision procedure will be imposed. How can a decision procedure be imposed while minimizing legitimacy concerns of decisions being made? 

1.3.2 The Four Stage Sequence Heuristic and Procedural Legitimacy


Kenneth Arrow used a heuristic, which John Rawls called the four stage sequence, which puts some structure on breaking this infinite regress of the imposition problem (Arrow 1963, 89-91; Rawls 1999, 171-176). We will repurpose their heuristic to put some structure on SAI decision making. In this context, we should view the SAI as an agent for the principals, who are sentient entities.

First, at the lowest stage of SAI decision-making are bureaucratic decisions. These are decisions which the SAI is designed to make with little or no input from its principals. Regulations and bounds on bureaucratic decisions are constructed in the higher three stages. The second lowest stage is legislative decisions. These are decisions made in consultation with some or all of the principals. In legislative decisions, the principals who are being consulted may either be all of the principals or some relevant sample of the principals. Legislative decisions help guide regulations and bounds on bureaucratic decisions. Regulations and bounds on legislative decisions are constructed in the higher two stages. The third lowest stage is the constitution. The constitution is the form, structure, and design of the SAI. It regulates and bounds legislative and bureaucratic decisions. It also specifies how the SAI can be amended. The SAI itself is bound and regulated by the first stage. The highest stage is the principal stage. At this stage, the principals construct the constitution of the SAI. The principal stage bounds and regulates the lower three stages.

Roughly speaking in political philosophy, procedural legitimacy is the idea that if the procedures are legitimate, then the outcomes of legitimate procedures are also legitimate. There is a strong and weak version of this claim. The strong version is that procedural legitimacy is equivalent to legitimacy in general. The weak version is that while tending to be procedurally legitimate is a necessary condition for decision making to be legitimate, it is not sufficient to be legitimate; other conditions must also be met to satisfy general legitimacy. Though I will later discuss the strong version a little bit when we discuss Condorcet, I am making the latter assumption here. So while I may not discuss other aspects of legitimate governance in detail (e.g. deliberation, rights, liberties, etc.), it is not because they are not important, but because I am focused on the procedural and aggregation aspects of value alignment.   

If we focus on the procedural aspects of value alignment problem, I think we can say the following. If the decisions of the first stage are procedurally legitimate, then if all other decisions by the SAI are ultimately procedurally bounded and guided by decisions in the first stage, all decisions in all four stages will be procedurally legitimate. 

Again, I am not asserting this makes all decisions generally legitimate, only procedurally legitimate. Procedural legitimacy is important because virtually no important decision in a large society will have a Pareto dominating alternative available. As a result, it is important that principals in the society believe the decision made is procedurally legitimate, even if they disagree with it. But given the imposition problem, the issue becomes, how can we meaningfully say that a particular first stage is procedurally legitimate, if non-Pareto dominating alternatives are chosen?

1.3.3 The Risk Aversion Principle


Suppose we were presented with one of two choices. With Choice A, you agree to flip a fair coin one million times; if the coin lands heads, your utility triples; if it lands tails, your utility is multiplied by 0; your initial pot is 1 util; after one million flips, you keep your final pot. With Choice B, you agree to flip a fair coin one million times; if the coin lands heads, your utility multiplies by 1.5; if it lands tails, your utility multiplies by .75; your initial pot is 1 util; after one million flips, you keep your final pot. By expected utility theory, one should choose Choice A, as your expected utility is 1.51000000 with Choice A, but only 1.1251000000 with Choice B. However, the probability of ending up with 0 utils if Choice A is taken is almost 1, while the probability of having more than 0 utils if Choice B is taken is 1. 


This variation of the classic St. Petersburg paradox
 clarifies the importance of risk in decision-making. Rawls suggested that the higher the stage, the more risk averse our decision making should be. So for example, so long as a fourth stage decision is consistent with constraints put on it in higher stages, a fourth stage decision can use the highly risky maximax strategy to choose an alternative; however, he contended at the first stage, in making the most important decision, people should use the most risk averse strategy, the difference principle, which roughly speaking is the minimax strategy.


I don’t make the assumption that people will be so risk averse that they will use the minimax strategy in the first stage, as that maybe excessively risk averse. However, I make the assumption that the higher the stage, then on average, the more risk averse decision making ought to be. This is because on average, the higher the stage, the more important and fundamental the decision being made is. The heuristic reasoning behind this principle is that the higher stages determine the basic structures of governance; in order to have a system of governance which is sustainable in the long run, we may sacrifice short term utility for long term sustainability. We don’t want perfection to be the enemy of “good enough”.


This justifies the use of social choice in determination of decision procedures in the highest stage. Roughly speaking, social choice tends to focus on whether it is logically possible or impossible for a voting system to satisfy some set of conditions. In every day decisions (e.g. low stage decisions), we may not care if a voting system occasionally fails some set of conditions. However, with respect to high stage decisions, where due to the risk aversion principle, we wish for a voting system to extremely rarely violate normatively desirable conditions and to extremely rarely satisfy normatively undesirable conditions; social choice, in discovering the logical possibilities and impossibilities of voting systems, becomes a very useful tool. 

1.3.4 Norms versus Procedures, and Social Choice versus Mechanism Design

   The Gibbard-Satterthwaite theorem and related results demonstrated that, roughly speaking, virtually all practical voting systems are susceptible to voters strategically misrepresenting their preferences to game the outcome (Gibbard 1977; Taylor 2005). For example, in the 2000 US presidential election, (where virtually every US state uses plurality voting to decide which presidential candidate to give its Electoral College votes to), the two major candidates were George W. Bush and Al Gore, and a minor candidate was Ralph Nader. Typically, Nader supporters preferred Gore over Bush. Thus, such a Nader supporter, if she or he believed Nader could not win, might strategically misrepresent her or his preferences by voting for Gore instead of Nader. 

Without strategic misrepresentation of preferences, decision procedures can be viewed as norms. For example, when voters do not misrepresent their preferences, under certain conditions, plurality voting can be understood as representing the norm that the alternative which is the first preference of the greatest number of voters ought to win an election; assuming there are m voters and n alternatives, the Borda count can be interpreted as representing the norm that the alternative which wins the plurality of the (mn2-mn)/2 paired comparisons should win an election;
 and so forth. However, when voters misrepresent their ballots, it is possible that a voting system no longer produces a winner that reflects its norm when voters vote sincerely.

As such, the mechanism design literature has blossomed. One way to describe mechanism design is, given an objective function, what mechanism (e.g. voting system) best replicates the results of that objective function, given that players (e.g. voters) may misrepresent their opinions (e.g. ballots)? Because of the practically universal susceptibility of voting systems to manipulation, the question becomes twofold: One, if voters are voting sincerely, what voting system do we want (i.e. what is our norm)? Two, given our objective function (i.e. norm), what mechanism ought we use to best replicate our norm, given that voters may be insincere? It should be clear that the second question cannot be easily answered if we do not answer the first. This chapter is focused on answering the first (i.e. deciding the norm), and leaves the second (i.e. choosing the procedure to replicate the norm) to mechanism design.

There are two additional points I wish to raise here. First, why not use non-deterministic voting systems to avoid potential misrepresentation of opinions? 
 Second, why not simply allow the mechanism be one that is understood as simply a game, and so long as all players are aware it is a game, it is fair? 

1.3.5 Non-Deterministic Voting


Given that practically all deterministic voting systems are susceptible to gaming, one might opt for non-deterministic voting systems. While there may be some usefulness for non-deterministic voting systems in the third and fourth stages (e.g. jury selection), I argue that at least in the first two stages, we should be very weary of using them for three reasons.  


First, strategy-proof non-deterministic voting systems are highly restrictive. Roughly speaking, Allan Gibbard showed that any non-deterministic voting system, which is strategy-proof, either allows one voter to be dictator or allows the winning alternative to be chosen from exactly two of the alternatives or some mixture of these two forms (Gibbard 1977). An example of the dictator form of decision-making would be random dictator, where each voter has an equal probability of being dictator, and whichever alternative is the first preference of the dictator, that dictator gets on that decision. An example of the two-alternative form would be random pair, where each possible pair of alternatives would have an equal probability of being chosen, and then majority rule is used to choose among the two selected alternatives.


Second, by not taking advantage of the law of large numbers, strategy-proof non-deterministic voting systems tend to violate the risk aversion principle. To illustrate this intuition, assume the decision being made is on something basically objective, like what is 63 multiplied by 7?
  Assume each individual is presented with three choices, but each individual has a mutually independent probability of choosing one of the two wrong choices as their top preference. Say it is something small like 4%. (This means, for example, if the three choices are 441, 451, and 461, then a voter has a 4% chance of not ranking 441 first.) Regardless of how many voters there are in the population, a wrong choice always has a 4% chance of being chosen via random dictator, and at least a one-third chance of choosing a wrong choice via random pair. (For a point of comparison, when voters are voting sincerely with plurality voting, a bad deterministic method, under such conditions, the likelihood that the correct choice, 441, wins, quickly approaches 1 as the number of voters increases. Granted, a 4% error rate is something we may allow on small decisions, particularly some legislative and bureaucratic decisions, but is this the type of risk we want to allow on bigger decisions?)


A third reason is that as the stakes get higher, there is an increased probability that a voter will try to corrupt the non-deterministic process or misrepresent the results of the non-deterministic process used by a decision procedure (Owens 2016; Associated Press 2004). The assumption here is that it is (1) easier to corrupt the non-deterministic process or misrepresent the results of the non-deterministic process than it is to corrupt or misrepresent deterministic processes, and (2) harder to verify corruption and misrepresentation of non-deterministic processes than deterministic processes. 

1.3.6 Voting as a Game


Given that practically speaking, virtually all deterministic voting systems are susceptible to being gamed, why not merely look at the voting system as a game where the best player of the game wins?
 The issue with that is there are huge disparities in access to computing power, which may give some coalition of voters a gross advantage over other voters.     


Another contention is that if voting systems can be gamed, should we not seek to use voting systems where the worst or average case scenario of solving the voting system (i.e. figuring out what behavior by a given player or coalition of players maximizes the outcome utility of that player or coalition) is computationally intractable? While this may seem like a worthwhile goal, again this comes down to an issue about inequality of computational resources. For example, as of 2017, neither chess nor Go have been solved, and they are still computationally intractable. Thus, by the standard of computational solvability, it may appear to be a “fair” game as no player has a reasonable chance of solving it. That said, suppose, I, a mediocre chess player were to team with Deep Mind, to compete against world champions like  Garry Kasparov or Magnus Carlsen, who don’t have anyone or computational resources to consult with. Clearly, given my computational resource advantage, I would almost certainly crush Kasparov and Carlsen in chess. This suggests that the computational intractability condition, at least by itself, is not a good enough normative condition for voting systems. Perhaps it may be desirable that a voting system is simple enough to game, that virtually every player can figure out their respective optimal strategy with little or few resources. This would eliminate the concerns about inequality of computational resources. 


All that said, in this chapter, we will assume voters are sincere, and attempt to find a voting system that maximizes procedural legitimacy. Mechanism design will be otherwise put to the side. Nevertheless, computational resource inequality is important in determining a mechanism.

1.3.7 Voting Systems 


A big measurement question for social choice is what data type (i.e. type of information) should the input be formatted in (as this can affect aggregation and outcomes)? While there are many data types on which social choice has been studied, by far it has been most studied on the ordinal data type, where each voter submits an ordinal rank ordering of alternatives as their ballot, and the output is some ordinal rank ordering of the alternatives.
 Such voting systems are commonly called Arrovian voting systems. Kenneth Arrow (and many social choice theorists after him) argued that the only acceptable voting systems are Arrovian ones (Arrow 1963, 9-11). That said, there has been recent interest in non-Arrovian voting systems which use other data types as input (Brams and Fishburn 1983; Balinski and Laraki 2010; Laslier and Sanver 2010; Center for Range Voting n.d.). Due to space constraints we do not go into extensive detail about non-Arrovian voting systems, however the reader is advised to examine that literature, because technically speaking, approval voting is a non-Arrovian voting system. However, since the non-Arrovian aspects of approval voting only matter in the context of tie-breaking, we need only look at UNV, the Arrovian analogue of approval voting, here. (Prasad 2014) provides a guide for tie-breaking in approval voting with a non-Arrovian context. 
We will assume there is some finite set of alternatives A and finite set of voters V. Let A be a non-empty subset of A, where A contains n alternatives and n > 1, and let V contain m voters where m > 1. A ballot is the expression of an opinion on the n alternatives. If the data type is ordinal, then an ordinal or Arrovian ballot is a total preorder of the n alternatives.
 

A profile is a collection of m ballots, one ballot from each voter in V. A profile domain, a collection of profiles, is the domain of a social welfare function. A social welfare function assigns to each profile in the profile domain a total preorder of the n alternatives in A, and at least one of the outputted total preorders is not a tie between all n alternatives.
 For each logically possible (A, V) given A and V, a voting system assigns a social welfare function. 


Our discussion of voting systems will proceed in the following manner. First, I will discuss some of the impossibility results that affect Arrovian voting systems. Second, I will define majority rule and absolute majority rule and discuss three normative arguments for them in the context of exactly two alternatives. Finally, I will argue that UNV best generalizes majority rule to multiple alternatives when we are restricted to Arrovian voting systems.

1.3.8 Impossibility Results: Condorcet’s Paradox


The first major impossibility result is called Condorcet’s paradox. The paradox exemplifies that the majority aggregation procedure can be intransitive. The majority aggregation procedure requires, for any two alternatives in a profile, say x and y, if more voters prefer x over y than prefer y over x, then x is socially ranked above y. If more voters prefer y over x than prefer x over y, then y is socially ranked above x. If an equal number of voters prefers x over y as prefers y over x, then x and y are socially ranked equally. 

To see how the majority aggregation procedure can be intransitive consider the following example. In general, if F(n) is the nth Fubini number, then there are [F(n)]m logically possible Arrovian profiles given m voters and n alternatives.
 Let V = {v1, v2, v3} and let A = {x, y, z}.  Suppose that each of the [F(3)]3 = 133 logically possible profiles occurs in the profile domain. Suppose v1 prefers x over y over z, v2 prefers y over z over x, and v3 prefers z over x over y. By the majority aggregation procedure, x should be socially ranked above y, as two of the three voters (namely voters 1 and 3) prefer x over y. Similarly, a majority of voters prefer y over z. If majority preference were generally transitive then this would imply that a majority of voters prefer x over z. However, this is not the case, as a majority of voters (namely voters 2 and 3) prefer z over x. Thus, if we were to use the majority aggregation procedure on this profile, we would get the intransitive social rank ordering x over y, y over z, and z over x. The fact that majority aggregation can be intransitive can make it confusing as to the meaning of election results. For example by analogy, if it were the case for integers that 2 > 1, and 3 > 2, and 1 > 3, the notion of a largest number in a finite set of integers could be ludicrous. Similarly, due to the intransitivity of majority aggregation, the idea of a best alternative based on majority aggregation can also seem ridiculous.

1.3.9 Impossibility Results: Intransitivity of Supermajority Rule

One might seek to overcome this intransitivity by requiring supermajority preference in order to determine social preference. But this too can go awry. Consider the following example. Let m = n, V = {v1, v2,..., vn}, and A = { a1, a2,..., an}. Allow each of the [F(n)]n logically possible profiles to be in the profile domain. Now consider the following profile from such a profile domain. For v1, her ballot is a1 over a2 over ... over an. For v2, her ballot is a2 over a3 over ... over an over a1. In general, for any vi, her ballot is ai over ai+1 over ai+2 over ... over an-1 over an over a1 over a2 over … over ai-2 over ai-1. Now consider a penultimate Pareto aggregation procedure, which requires that for any two alternatives, ax and ay, if m > 2, and m – 1 voters prefer ax over ay, and exactly one voter prefers ay over ax, then the social welfare function must socially rank ax over ay. In other words, this is roughly a supermajority rule that requires all voters but one to prefer x over y in order for x to be ranked above y. But given our profile, this penultimate Pareto procedure is intransitive as it would require a social rank ordering which is a1 over a2 over a3 ... over an-1 over an over a1. In other words, even a strong supermajority rule, like the penultimate Pareto aggregation procedure, cannot overcome the problem of intransitivity.

1.3.10 Impossibility Results: Arrow’s Theorem

In general, every Arrovian voting system has a problem due to Arrow’s theorem. (There are many versions of Arrow’s theorem (Arrow, Sen, and Suzumura 2002, 35-172). The version we focus on has particularly strong conditions, which makes the relationship with May’s theorem much clearer.) Arrow’s theorem demonstrated that every Arrovian voting system violates at least one of five normatively desirable conditions: unrestricted domain, positive association (monotonicity), independence of irrelevant alternatives (IIA), citizen sovereignty, and non-dictatorship.
 We first provide some definitions for some terms, and then proceed to define the five conditions.


Let vi(p, x, y) be the preference that voter i holds on the pair of alternatives, ax and ay, in the profile p. Note, vi(p, x, y) can take one of three values: ax over ay, ay over ax, or indifference between ax and ay. Now let p and pʹ be two distinct profiles in the same profile domain. A voter vi is said to raise ax relative to ay from p to pʹ if [([vi(p, x, y) = (ay over ax)] and [vi(pʹ, x, y) = [(ax over ay) or (indifference between ax and ay)]) or ([vi(p, x, y) = (indifference between ax and ay)] and [vi(pʹ, x, y) = (ax over ay)])]. In other less formal words, a voter can raise x relative to y on her ballot in one of two ways. One, originally, she prefers y over x, but now prefers x or is indifferent between them. Two, she originally is indifferent between x and y, but now prefers x.     
Unrestricted Domain: A social welfare function (with the set of alternatives A and set of voters V) satisfies unrestricted domain if for each of the [F(n)]m logically possible profiles, the output of the social welfare function is a total preorder of the alternatives in A. By definition, an Arrovian voting system satisfies unrestricted domain iff (i.e. if and only if) each of its social welfare functions satisfies unrestricted domain.


Informally speaking, for a social welfare function, unrestricted domain requires an output for every logically possible profile given a particular set of voters and particular set of alternatives.
Monotonicity: Let p and pʹ be two distinct profiles in the same profile domain, where ax and ay are distinct alternatives in A. Let p and pʹ be such that from p to pʹ no voter raises ay relative to ax, but at least one voter raises ax relative to ay. If an Arrovian social welfare function is monotonic, then for any such p, pʹ, ax, and ay, (if the Arrovian social welfare function socially ranks ax above ay given p, then that Arrovian social welfare function must socially rank ax above ay given pʹ) and (if the Arrovian social welfare function socially ranks ax and ay equally given p, then that Arrovian social welfare function must socially rank ax above or equal to ay given pʹ). By definition, an Arrovian voting system is monotonic iff every Arrovian social welfare function of that Arrovian voting system is monotonic.
    


Roughly speaking, monotonicity requires that if x is socially ranked above y, then some voter raising x relative to y on her ballot should cause x to remain socially above y if no other voter changes her ballot; similarly, if x and y are socially equal, then a voter raising x above y should not cause x to be socially ranked below x if no other voter changes her ballot.
Independence of Irrelevant Alternatives: Let (A, V) and (Aʹ, V) both be members of (A, V) for a voting system. Let p be a profile on (A, V) for a social welfare function of that voting system, and pʹ be a profile on (Aʹ, V) for a social welfare function of that voting system. Let ax and ay both be members of A and Aʹ. Suppose for every vi, vi(p, x, y) = vi(pʹ, x, y). If that Arrovian voting system satisfies IIA, then for any such p, pʹ, ax, and ay, the voting system must output the same relative rank ordering of ax and ay for p as it does for pʹ.
  


Informally, if no voter changes her relative rank ordering of x to y, IIA requires that the relative social rank ordering of x to y remain unchanged.       

Citizen Sovereignty: If an Arrovian social welfare function satisfies citizen sovereignty, then for every pair of alternatives in A, say ax and ay, there must be (at least one profile in the profile domain where the output socially ranks ax above ay) and (at least one profile in the profile domain where the output socially ranks ay above ax). An Arrovian voting system satisfies citizen sovereignty iff every social welfare function of that voting system satisfies citizen sovereignty.


Roughly, citizen sovereignty requires for any pair of alternatives, x and y, there exists some profile where x is socially ranked above y in the output and also there exists some profile where y is socially ranked above x in the output.
Non-Dictatorship: If a social welfare function is non-dictatorial, then it is not the case that there exists a particular voter, such that the output of the social welfare function is always the same as the ballot submitted by that particular voter. An Arrovian voting system is non-dictatorial iff every social welfare function of that voting system is non-dictatorial.
   


Informally speaking, non-dictatorship requires that there does not exist some voter such that the output is always equivalent to the ballot submitted by that voter. 

Arrow’s Theorem: There exists no Arrovian voting system which satisfies unrestricted domain, monotonicity, IIA, citizen sovereignty, and non-dictatorship.

1.3.11 Possibility Results: Majority Rule and May’s Theorem 


When there are exactly two alternatives, there are exactly three logically possible Arrovian ballots: ax over ay, ay over ax, and indifference between ax and ay. The profile domain of majority rule allows all 3m logically possible profiles on two alternatives and m voters; majority rule uses the majority aggregation procedure. Absolute majority rule is identical to majority rule, but it does not allow any voter to express indifference between alternatives.  


A ballot is in the balloting procedure of a social welfare function iff the ballot occurs in some profile in the profile domain of that social welfare function. For examples, given the alternatives in A are exactly ax and ay, the balloting procedure of majority rule is {ax over ay, ay over ax, indifference between ax and ay} and the balloting procedure of absolute majority rule is {ax over ay, ay over ax}.

Decisiveness: If the balloting procedure of an Arrovian social welfare function consists of exactly b ballots, then the social welfare function is decisive if its profile domain consists of exactly all bm logically possible profiles given those b ballots. An Arrovian voting system is decisive iff every one of its social welfare functions is decisive.


Roughly speaking, decisiveness represents equality and independence of expression. First, each voter has equality of expression in the sense that each voter has the same set of ballots to choose from to express in an election. Second, each voter has independence of expression in the sense that regardless of how any other voter votes, a voter may submit any ballot from the balloting procedure.

Anonymity: If a permutation of ballots in a profile never changes the output of an Arrovian social welfare function, then such a social welfare function is anonymous. An Arrovian voting system is anonymous iff all of its social welfare functions are anonymous.


Informally, anonymity is equality of voters as it requires that the voting system treat each voter equally.

Neutrality: If a permutation of alternatives in a profile always permutes alternatives in the output of the Arrovian social welfare function in the same manner, then such a social welfare function is neutral. Iff every social welfare function of an Arrovian voting system is neutral, only then is such a voting system is neutral. 


Roughly speaking, neutrality is equality of alternatives in that it requires that each alternative be treated equally by the voting system.

Positive Responsiveness: Let p and pʹ be two distinct profiles in the same profile domain, where ax and ay are distinct alternatives in A. Let p and pʹ be such that from p to pʹ no voter raises ay relative to ax, but at least one voter raises ax relative to ay. If an Arrovian social welfare function is positively responsive, then for any such p, pʹ, ax, and ay, (if the Arrovian social welfare function socially ranks ax above or equal to ay given p, then that Arrovian social welfare function must socially rank ax above ay given pʹ). Iff every Arrovian social welfare function of an Arrovian voting system is positively responsive, then that Arrovian voting system is also positively responsive.  


Informally speaking, positive responsiveness requires monotonicity and maximal responsiveness. Monotonicity was discussed earlier. Maximal responsiveness can be interpreted roughly as: if there is a tie between x and y, one voter raising x relative to y on their ballot is sufficient for x to be socially ranked above y if no other voter changes her ballot. 
May’s Theorem: If there are exactly two alternatives, say ax and ay, and the balloting procedure is {ax over ay, ay over ax, indifference between ax and ay}, then the unique social welfare function characterized by decisiveness, anonymity, neutrality, and positive responsiveness is majority rule (May 1952).


1.3.12 Possibility Results: Absolute Majority Rule and Condorcet’s Jury Theorem

Background Conditions of Condorcet’s Jury Theorem: Suppose there is an alternative, a1, which is in exactly one of two states: true or not true. Suppose that each of the m voters has a probability q of correctly determining the state of a1, where 1/2 < q < 1. Further suppose that each voter’s determination is mutually independent of the other m – 1 voters’ determinations. Finally, suppose each voter sincerely expresses her determination. 

Condorcet’s Jury Theorem: Given the background conditions of Condorcet’s jury theorem, absolute majority rule tracks truth.
 As m increases, the likelihood that the majority of voters is correct quickly and asymptotically approaches 1.

1.3.13 Possibility Results: Absolute Majority Rule and the Rae-Taylor Theorem


The argument behind the Rae-Taylor theorem roughly asks a voter to choose a decision rule that maximizes her utility given that she does not know which voter she is because she is behind a hypothetical veil of ignorance that requires her to assume that she has an equal probability of being any of the m voters (Harsanyi 1953; Rae 1969; M. Taylor 1969). To simplify our exposition of our generalization of this theorem to multiple alternatives, it helps to express this theorem in terms of coin flipping, but keep in mind this is just a representation of the underlying random processes.

Background Conditions of the Rae-Taylor Theorem: Suppose there are m voters and two alternatives, x and y. Suppose there is a gold color coin, which has two sides, one representing x and the other y. The coin has a probability π of landing x, where 0 < π < 1, and a probability of 1 – π of landing y. Suppose we have m - 1 copies of this gold color coin made in silver color, and distribute one coin to each voter. (Each coin is identical except in the color of one coin.) Each voter flips her coin, mutually independent of any of the other voters’ coin flips, but every voter, due to a veil of ignorance, does not see the outcome of any of the coin flips. A recorder, separate from the voters, documents what side each voter threw (i.e. the recorder knows what side any given voter threw). The recorder approaches the voter who had been given the gold coin, and tells her the tally (i.e. how many coins landed x and how many landed y, but the recorder does not tell the gold coin voter which voters threw which sides). The gold coin voter must now choose either x or y but not both; and her chosen alternative is implemented. After the gold coin voter makes a choice, the recorder reveals to the gold coin voter how her coin flip turned out. If the choice the gold coin voter made coincides with how her coin flip turned out (e.g. she chose alternative y, and she had in fact thrown side y) then the gold coin voter gets a utility of u, where u > 0. If her choice and coin flip do not coincide, then she gets a utility of –u.  

Rae-Taylor Theorem: Given the background conditions of the Rae-Taylor theorem, in order to maximize her expected utility, the gold color coin voter should choose the side with the most voters. In other words, if we interpret a voter throwing x as expressing the ballot “x over y” and a voter throwing y as expressing “y over x”, absolute majority rule maximizes expected utility of the gold color coin voter. 

1.3.14 UNV


Recall, a preference order is an ordered partition. A ballot has η parts, where 1 ≤ η ≤ n. The η parts of a ballot can be labelled first part, second part, …, ηth part. Any two alternatives belonging to the same part of a voter’s ballot, that voter is indifferent between. In general, if α < β, then a voter will prefer any alternative in the αth part of her ballot over any alternative in the βth part of her ballot. 


If η = 1, then the ballot is a trivial ballot. If η = 2, the ballot is a dichotomous ballot. If η > 2, then the ballot is a polychotomous ballot. With that, we can define UNV.

UNV: Given the set of alternatives A and set of voters V, the balloting procedure consists exactly of the 2n – 1 logically possible non-polychotomous ballots. Because the UNV social welfare function is decisive, its profile domain consists exactly of the (2n – 1)m logically possible profiles given its balloting procedure. The UNV social welfare function uses the majority aggregation procedure to socially rank order alternatives. The UNV system applies the UNV social welfare function to each possible (A, V).


More informally speaking, UNV allows the voter to choose some non-empty subset of alternatives from A as her choice set. UNV socially rank orders alternatives based on the number of voters that place each alternative in their choice set. Roughly speaking, UNV is the Arrovian version of approval voting.
 


Earlier, we discussed three results which have been used to argue that majority rule and absolute majority rule are the best voting systems when restricted to two alternatives: May’s theorem, Condorcet’s jury theorem, and the Rae-Taylor theorem. Robert Dahl, one of the foremost democratic theorists of the 20th century, lists them as three of the four best defenses of absolute majority rule and majority rule, while Christian List, a leading 21st century democratic theorist, mentions them as the three best (Dahl 1989; List 2013). Due to Condorcet’s paradox, Arrow’s theorem, and similar impossibility results, Arrovian voting systems which make use of polychotomous ballots run into problems, such as intransitivity, when trying to generalize these three results to more than two alternatives. However, UNV, which makes no use of polychotomous ballots, generalizes these three results, often uniquely. Thus, the argument can be made, if one believes majority or absolute majority rule is normatively desirable on two alternatives, then one should also find UNV normatively desirable on multiple alternatives.

1.3.15 UNV: May’s Theorem and Arrow’s Theorem


It is important to note, anonymity, neutrality, and positive responsiveness are respectively stronger versions of non-dictatorship, citizen sovereignty, and monotonicity. Decisiveness is a weaker version of unrestricted domain. Furthermore, our version of IIA is stronger than Arrow’s version of IIA. So in essence, we have strengthened four of Arrow’s five conditions, and weakened unrestricted domain. 

The question arises, does there exist an Arrovian voting system which satisfies May’s four conditions and IIA? If so, what Arrovian voting system satisfies those five conditions on the least restricted profile domains?
 

Arrow-May Theorem Generalization: No Arrovian voting system which uses an Arrovian social welfare function which uses a profile domain with a profile with a polychotomous ballot can satisfy May’s four conditions and IIA. The UNV system is the unique voting system with the least restrictive profile domains that satisfies the five conditions (Prasad 2017). 


In other words, informally, UNV is the voting system with the least restrictive domain which satisfies May’s four conditions and IIA. 

1.3.16 UNV: Condorcet’s Jury Theorem


A problem Condorcet encountered with his jury theorem was that majority preference cycles could prevent clear determination of which alternative has the greatest likelihood of being true, as it could produce a cycle where x is more likely true than y, y is more likely true than z, and z is more likely true than x. To overcome these cycles, many voting systems will either abandon decisiveness, neutrality, or the majority aggregation procedure. The following theorem makes clear this is not necessary. First, we need to define the epistemic condition.

Epistemic Condition: Let ax and ay be any two alternatives in A. A voting system, on a given set of background conditions, is said to be epistemic, if given the set of background conditions, [(it socially ranks ax above ay) iff (ax is more likely in fact true than ay)] and [(it socially ranks ax and ay equally) iff (ax and ay have an equal likelihood of in fact being true)].


Roughly speaking, the epistemic condition requires that there exists a set of background conditions where the voting system tracks truth. 
Condorcet Jury Theorem Generalization: Regardless of the background conditions, no (Arrovian voting system which uses an Arrovian social welfare function which uses the majority aggregation procedure and a profile domain with a profile with a polychotomous ballot) can be epistemic, decisive, and neutral. The UNV system is the voting system with the least restrictive profile domains that is epistemic, decisive, neutral, and uses the majority aggregation procedure (Prasad 2017). 


Roughly speaking, UNV is the decisive and neutral voting system with the least restrictive domain which can possibly track truth using the majority aggregation procedure.

1.3.17 UNV: The Rae-Taylor Theorem

Background Conditions of the Rae-Taylor Theorem Generalization: Let the n alternatives be a1, a2, …, an. Suppose that for any given voter, her utility for an alternative is either u, where u > 0, or –u. Thus, a voter’s utility on the n alternatives can be expressed with an n digit binary number. For example, if n = 3, then 110 means that the utilities of a1 and a2 are u, while the utility for a3 is -u. Let there be a gold color die with 2n sides, where each side uniquely represents one of the 2n possible ways a voter can assign utility to the n alternatives. We can call these 2n sides d000…000, d000…001, …, d111…111, where the subscripts are expressed in binary. Each side has a probability of being thrown, which are π000…000, π000…001, …, π111…111, respectively. Note each side has a probability of being thrown greater than or equal to 0, and less than or equal to 1. Furthermore, π000…000 + π000…001 + … + π111…111 = 1. Further note, each side represents an Arrovian ballot. For example, the side d010 represents the ballot where a voter “prefers a2 over a1 and a3, but is indifferent between a1 and a3”. Indifference between all alternatives is represented by d000…000 and d111…111. Now make m – 1 duplicate copies of this gold color die, except the duplicate copies should be silver color. The probability distribution of the sides being thrown is the same for all m dice. Give each voter one die. Each voter throws her die but does not know the outcome of her die or any other die throw because she is behind a veil of ignorance. (Note, each of the die throws is mutually independent of the other die throws.) A recorder, who is not one of the voters, records what side each voter throws and records this. From this, the recorder constructs a list which specifies how many times each Arrovian ballot occurs. The recorder presents this list to the voter who threw the gold color die, and this voter must choose exactly one of the n alternatives. If this voter chooses an alternative which is in the first part of her ballot, then she receives u utils, but if her chosen alternative is not in the first part of her ballot, she receives –u utils. 

Rae-Taylor Theorem Generalization: Given the background conditions of the Rae-Taylor theorem generalization, the gold color die voter maximizes her expected utility by using UNV on the information provided on the list. Note, for the case where n = 2, π00 = π11 = 0, π01 > 0, π10 > 0, and π01 + π10 = 1, the Rae-Taylor theorem generalization is equivalent to the Rae-Taylor theorem (Prasad 2017). 


Informally speaking, the Rae-Taylor theorem generalization shows that under the conditions of the generalization, UNV maximizes the utility of the voter with the gold color die. Furthermore, the Rae-Taylor theorem is just a special case of this generalization.

1.3.18 Additional Considerations Regarding Consent Maximization, Approval Voting, and UNV


Robert Dahl’s fourth argument for majority rule in the context of exactly two alternatives is that it maximizes the number of voters who are self-determined (i.e. get an alternative which they would choose themselves) (Dahl 1989, 135-152). We can generalize this argument to multiple alternatives with approval voting and UNV by interpreting them thru the context of the consent maximization norm. The consent maximization norm is the norm that if the number of voters that consent to x is greater than the number of voters that consent to y, then x should be socially ranked above y. Consent can be conceived in at least four ways such that approval voting and UNV maximize self-determination: constraint satisfaction, satisficing, contracts, and Arrovian ways. 

Deciding which alternatives to consent to can be interpreted as a constraint satisfaction problem. A voter is self-determined in the sense that she chooses for herself which constraints she wishes to be satisfied; the subset of alternatives she consents to is exactly the set of alternatives which each satisfy her set of constraints. When for each voter, a voter approves exactly those alternatives she consents to, approval voting socially rank orders alternatives in a manner that maximizes the number of consents. 


Herbert Simon provides another way to interpret consent thru his utility concept of satisficing. A voter is said to be satificed by some alternative if the utility that voter receives from that alternative is above that voter’s self-determined utility threshold (Simon 1955; Altman 2015). If for each voter, a voter approves of all alternatives above her threshold and does not approve of any other alternatives, then approval voting maximizes the number of voters satisficed.  


Contracts are a third prism by which to interpret consent. (This interpretation is closely tied to social contract theory.) Each alternative under consideration can be understood as a potential contract. Suppose each voter approves each contract she is willing to consent to. Under such conditions, approval voting chooses the contract which the greatest number of voters are willing to consent to.


A fourth interpretation of consent is Arrovian and preference based and requires a few assumptions. The first assumption is a consent completeness axiom: for each alternative, say x, each voter holds exactly one of two beliefs: she consents to x or she does not. The second assumption is a consent transitivity axiom: for any pair of alternatives, say x and y, if a voter consents to x and does not consent to y, then that voter prefers x over y. The third assumption is a consent maximization normative axiom. This is the axiom that the goal of a particular election is to socially rank order alternatives based on their number of consents. The fourth assumption is a normative consent transitivity axiom. Given the first three axioms, if (a voter consents both to x and to y) or (she does not to x and does not consent to y), then we can assume (for our purposes) that the voter is indifferent between x and y. Note the claim in that fourth axiom is not that the voter is in fact indifferent between x and y, but rather that given our first three axioms, we can treat her preferences that way in a particular election. The reason is that the first three axioms in conjunction with the fourth one allow us to use Arrovian UNV to socially rank order alternatives in a manner that maximizes consent. This should not be controversial, as an analogous axiomization of plurality voting for first preference maximization could justify why we treat voters as being indifferent among non-first preference alternatives for plurality voting, even though we may agree that this is not necessarily the case in fact (Goodin and List 2006). Thus, even if we accept Arrow’s arguments against non-Arrovian voting systems, there is still an Arrovian justification for UNV to maximize consent.


Besides Dahl’s fourth argument, there are two additional considerations to examine for approval voting: mechanism design and practice. Besides the already mentioned (Brams and Fishburn 1983), the two other most important works on approval voting mechanism design are (Myerson and Weber 1993) and  (Nagel 2007). Unfortunately, the issue with most current mechanism design literature on approval voting is the difficulty of finding appropriate empirical data to test their models. For example, (Nagel 2007) offers an important game theoretic examination of strategic behavior with approval voting. However, given the paucity of the existing empirical data available, (Nagel 2007) provides an empirical example which he believes approximates strategic behavior in approval voting, though the example uses a voting system which is not approval voting. Others have argued that the strategic behavior in the example can be explained with characteristics that do not occur in approval voting but do occur in that other voting system (Smith and Smith n.d.). Future mechanism design research will greatly benefit from more empirical data on actual approval voting elections.      

Practice of approval voting has steadily grown over the decades since the 1970s. It is used by the Mathematical Association of America, the American Mathematical Society, the Institute for Operations Research and Management Sciences, the American Statistical Association, the Society for Judgment and Decision Making, and the Society for Social Choice and Welfare (Center for Election Science n.d.). 
Earlier, we had discussed how May’s theorem, Condorcet’s jury theorem, and the Rae-Taylor theorem were three of the four reasons Robert Dahl used to argue that majority rule (and absolute majority rule) is the best voting system on exactly two alternatives. We then showed how UNV, the Arrovian version of approval voting, was able to generalize these theorems to multiple alternatives, often in a unique manner. Dahl’s fourth argument for majority rule for two alternatives was that it maximized self-determination. We can make a similar argument about UNV and approval voting for multiple alternatives. They minimize the number of voters who have an alternative imposed upon them which they did not consent to. This is arguably the most important reason why UNV and approval voting maximize procedural legitimacy.
1.4 Condorcet, Standing, and Intelligence Explosion Background Conditions

1.4.1 Condorcet 


The beginnings of social choice and intelligence explosion research are highly intertwined through the work of 18th century French mathematician, Nicolas de Condorcet. Born in 1743 and a student of mathematician Jean le Rond d’Alembert, Condorcet did important work in integral calculus early in his career. It was d’Alembert who championed Condorcet’s acceptance into the French Academy of Sciences. Later in life, Condorcet turned to the study of philosophy and political economy, and became increasingly engaged in French politics.


In Sketch of a Historical Picture of the Progress of the Human Mind (1795), a non-technical work designed for a general audience published a year after Condorcet’s death, Condorcet contended that human knowledge and technology could accelerate indefinitely into the future thru what we would today call recursive self-improvement. He predicted a result of this would be indefinitely lengthened human lifespans. In Sketch and other non-technical works, Condorcet put forth a historical argument for this claim. He asserted that prior to the printing press, human knowledge could be lost relatively easily. However, with the invention and spread of the printing press around the world, destruction of any society and its knowledge did not necessarily cause that knowledge to be lost in another part of the world (which, if it was important knowledge, would likely have already received it from the destroyed society and would have made copies.) Thus, so long as a global catastrophe did not occur, knowledge would continue to grow unimpeded by the fall of any particular society. (Note, in Condorcet’s time, machine guns, TNT, and nuclear weapons did not exist. Clearly, Condorcet did not anticipate the speed with which humans would create more and more destructive weapons which could cause global catastrophes.)


What has usually gone unnoticed is that Condorcet had developed a mathematical model for what Bostom would call a collective superintelligence explosion (Bostrom 2014, 54), which we today call the Condorcet jury theorem. As we noted earlier, roughly speaking the theorem asserts that if voters are sufficiently honest, knowledgeable, and independent thinking, then the likelihood that the majority of voters is correct on some question quickly and asymptotically approaches one as the number of voters increases. In other words, the closer we are to those background conditions obtaining, the closer we are to having perfect knowledge.


When one views Condorcet’s philosophical writings thru the lens of his jury theorem, one clearly sees that Condorcet sought to push for political institutions that promoted honesty, knowledge, independent thinking, and larger voter populations. For examples, Condorcet advocated for universal instruction to increase knowledge; in a time when travel and communication made partisanship and interest groups more difficult to coordinate and form at a distance, he advocated for voting by mail as opposed to in-person parliments, to prevent the rise of cabals that destroy independent thinking; he sought to universalize suffrage to all adults, regardless of race or class or sex, to increase voter populations. 


It is important to keep in mind that Condorcet lived in a time prior to non-Euclidean geometries and the continuum hypothesis. Thus, he believed that all of math and true knowledge was a complete and unified logical coherent whole. Therefore, he believed there exists an objectively true morality. However, he seems to have had an interesting Rousseauian take on this (Grofman and Feld 1988). Specifically, he believed that the existence of morality is contingent on the existence of sentient beings, in that only sentient entities can feel pain or pleasure. In some sense, which is not entirely clear, Condorcet believed that if we properly aggregated this pain and pleasure information across all sentient entities (across time and space) in conjunction with information about the reality of the world (e.g. what decisions are being considered at each point in time, what are the alternatives available at each decision point, etc.), then we would have a description of the true morality. In other words, if we properly applied social choice theory to all moral dilemmas, then we would know true morality.


It is not clear exactly how Condorcet would have exactly specified the proper application of social choice to moral dilemmas. However, from his mathematical and philosophical writing, he seems to have emphasized the importance of voters who are honest, (scientifically and morally) knowledgeable, independent, and plentiful. When there are institutions that promote these background conditions, and voters sufficiently satisfied these conditions, Condorcet believed that correct moral and scientific knowledge would tend to be produced.


Sadly, the vast majority of Condorcet’s writings, especially his mathematical and technical writings, lack English translations. However, the interested reader is directed to English translations at (Baker 1976; McLean and Hewitt 1994; McLean and Urken 1995; Lukes and Urbinati 2012).


Focus on Condorcet today tends to be on generalizing his jury theorem, and identifying institutions that facilitate epistemic democracy (i.e. democracy that in some sense tracks truth). Technically, there are different ways to extend Condorcet’s jury theorem to discover truth, each of which has its own set of necessary background conditions. For examples, knowledge and independence conditions have been relaxed in various ways; however, roughly speaking, when we consider the many extensions of Condorcet’s jury theorem, honesty, independence, and large population tend to be important (Young 1988; Owen, Grofman and Feld 1989; Ladha 1992; Austen-Smith and Banks 1996; List and Goodin 2001; Ben-Yashar and Kraus 2002; Prasad 2012; Brams and Kilgour 2014; Prasad 2017). 

That said, it is helpful to create an altruism condition separate from a knowledge condition. For example, if a population of sufficiently knowledgeable, independent, and honest voters were all focused on the goal of maximizing the number of cats they could kill, they could use the jury theorem to figure out how to maximize the number of cats they could kill. The point is, given we believe killing cats indiscriminately is wrong, if we want the jury theorem to be used towards good purposes, it seems desirable that voters are altruistic. So roughly speaking, the desirable background conditions are honesty, altruism, knowledge, independence, and large population.


Of course, this leaves open the question, what constitutes “altruism”? We know that when for each individual, her utility is independent of the utility of others, several mechanisms and criteria (e.g. Pareto domination, Vickrey auctions, Brams-Taylor procedure) offer normatively compelling solutions to group decision making problems (Vickrey 1961; Brams and Taylor 1995). However, when an individual’s utility is contingent on lowering the utility of others, these solutions can lose their normative heft (Sen 1970; Gibbard 1973; Blau 1975). For example, the Brams-Taylor procedure specifies an algorithm for dividing a heterogenous cake among an arbitrary finite number of players such that each player believes that the utility of her piece is as great as or greater than the utility of the piece any other player receives; however, if the player’s utility is dependent on having a piece with strictly greater utility than any other player’s piece, then the algorithm cannot guarantee satisfaction of such a player. 


All of this suggests the importance of having institutions that promote non-envious and non-sociopathic utilities in individuals. For our operational purposes, we may roughly define envy as the desire to have higher utility relative to the utility that others have, and sociopathy as the desire to lower the utility of others (e.g. cause others to suffer).
 If each entity which has standing in an election happens to be the set of all entities which ought to have standing, then it is arguably sufficient for ideal conditions that each voter has an utility that is independent of the utilities of others; this would allow conditions like Pareto domination to maintain their normative heft. But given that all entities which might deserve standing in an election (e.g. children, animals, future generations, etc.) cannot vote, it is important that voters be empathetic and compassionate. By empathetic, we roughly mean capable of perceiving the desires, repulsions, and welfare concerns of other sentient entities, including humans, non-humans, and future generations. Of course, an empathetic person may not care about the welfare of other sentient entities; it is additionally helpful that voters be compassionate, where the voter is concerned about the welfare of other sentient entities (including humans, non-humans, and future generations). Roughly, we can understand an entity as being altruistic if it is both empathetic and compassionate.

1.4.2 Background Institutions


Our examination of Condorcet suggests a framework for thinking about background institutions that exist when voters vote. There are long term concerns and short term concerns. In the long term, this would almost certainly include trying to give the right to vote to virtually all human adults, and perhaps others as well. In the short term, where AI behavior is restricted to specialized domains, we may well have to figure out how to approximate appropriate background conditions.


In the long run, to prepare for possible governance of an SAI, we probably need institutions which promote honesty, altruism, knowledge, and independent thinking in as many entities as possible. These are complex issues, which can lead to difficult questions of trade offs. When is it okay to be dishonest for the sake of altruism? If everybody learns the conventional scientific reasoning of the times, does this not potentially decrease independent thinking? Given the complexity of these issues, it suggests the importance of developing more precise definitions of these terms, as well as a general model of Condorcet’s jury theorem, where each specific extension of the jury theorem is just a special case of the general model. This can help us figure out how to make real world trade offs in a manner that still produces beneficial outcomes. 


In the short run, for the development of less far reaching AI, given we are not likely to be able to give standing in elections to all who ought to have standing, it is of great importance that voters who do vote be altruistic. For example, when an autonomous vehicle must decide whether to travel faster to allow the passengers to arrive at their destination more quickly, or travel slower to lower emissions, voting by the passengers (or society in general) will probably not take into account the opinions of future generations affected by emisssions unless the voters who exist now and have standing to vote are altruistic and concerned about the welfare of future generations (Baum 2017). Relatively speaking, in psychology, cognitive science, and general discourse, there is a great deal of attention to identifying sociopaths, people who get pleasure from the suffering of others; what would be of great usefulness is the development of a precise definition for and the ability to identify persons who we might call anti-sociopathic altruists or anti-sociopaths. Informally, these would be people who have some empathetic capacity for all sentient entities (including non-humans and future generations) and their utility tends to decrease when they realize other sentient entities are suffering, and it similarly increases when they realize other entities are having increasing utility. A precise definition of anti-sociopaths and the development of reliable ways to identify them and to develop people into them will significantly assist us in resolving issues of standing with respect to entities that cannot vote but deserve some standing. Even if anti-sociopaths are a small proportion of the human population (e.g. 0.1%), they could form a large pool of potential voters. Anti-sociopaths could be trained to be honest, knowledgeable, and independent thinking via techniques developed by the Good Judgment Project and the Center for Applied Rationality (Center for Applied Rationality n.d.; Good Judgment Project n.d.; Tetlock and Gardner 2015). A pool of such trained anti-sociopaths could become a population from which AI could draw voters when it uses social choice to make ethical decisions. In creating such a pool, it is important to ensure that such a pool is diverse with respect to race, sex, religion, nationality, economic condition, ideology, age, and other important demographic variables. 

Finally, while anti-sociopaths may be a short term fix for the value alignment of non-far reaching AI, developing appropriate background institutions where all adult humans have standing (and the right to vote) in governance of a far-reaching AI, like an SAI, is of the utmost importance for maximizing legitimacy of such AI. There is a long history of attempts to curtail who can vote, in the name of improving decision-making, while in fact trying to maximize power.

1.5 Conclusion


This chapter has argued that while a significant amount of ethical reasoning can be offloaded onto AI users and others via social choice, AI designers cannot avoid making and imposing their ethical decisions into the design of an AI. Because of this, when AI designers are forced to impose their ethical reasoning into the design and behavior of AI, designers must be transparent and explicit about: why they must make an imposition, what possible options are available to resolve the problem requiring an imposition, why they choose a particular option, and how such an option is implemented.  


In addition to providing a review of the existing literature on social choice and the value alignment problem, this chapter offers a framework for how to use social choice to align the values of an AI. Roughly, given appropriate background conditions, the highest level of decision making should be determined by the norm of consent maximization (which is approximately approval voting when voters are sincere), but lower level decision making can make use of almost any other norm so long as there are appropriate background conditions and the norms guiding lower level decisions are determined by higher level decisions. Examination of the work of Nicolas de Condorcet, arguably both the first social choice and first intelligence explosion theorist, suggests that we should have background institutions which promote honesty, altruism, knowledge, and independent thinking in voters; and we should have as many voters as possible who behave in this manner when using social choice to solve ethical dilemmas for AI. Development of a general model of Condorcet’s jury theorem can help us figure out how to make tradeoffs when background conditions can potentially conflict. 


Obviously, this is an unusual chapter for a textbook on AI, given there is so much discussion of ethics and normative reasoning. But this is unavoidable, as AI designers cannot evade ethical reasoning when so much decision making power is given to AI. All of this suggests that as more decisions are delegated to AI, in addition to more training in formal modeling and cognitive science, education and training in ethical, economic, political, and social philosophy will become of increasing importance for AI designers.     

1.6 References

Allen, Colin, Gary Varner, and Jason Zinser. 2000. "Prolegomena to any future artificial moral agent ." Journal of Experimental & Theoretical Artificial Intelligence 251-261.

Allen, Colin, Iva Smit, and Wendell Wallach. 2005. "Artificial Morality: Top-down, bottom-up, and hybrid approaches." Ethics and Information Technology 149-155.

Altman, Morris. 2015. "Satisficing." In Real-World Decision Making: An Encyclopedia of Behavioral Economics, by Morris Altman, 374-376. Santa Barbera: ABC-CLIO.

Arrow, Kenneth J. 1963. Social Choice and Individual Values. New York: John Wiley and Sons.

Arrow, Kenneth J., Amartya K. Sen, and Kotaro Suzumura, . 2002. Handbook of Social Choice and Welfare. Vol. 1. 2 vols. Amsterdam: Elsevier.

Arrow, Kenneth J., Amartya Sen, and Kotaro Suzumura. 2011. Handbook of Social Choice and Welfare. Vol. II. II vols. Amsterdam: Elsevier.

Associated Press. 2004. "Convictions erased for four men in McDonald's scam." USA Today. July 20. Accessed November 22, 2017. https://usatoday30.usatoday.com/news/nation/2004-07-20-mcdonalds-scam_x.htm.

Austen-Smith, David, and Jeffrey S. Banks. 1996. "Information Aggregation, Rationality, and the Condorcet Jury Theorem." American Political Science Review 34-45.

Baker, Keith Michael. 1976. Condorcet: Selected Writings. Indianapolis: Bobbs-Merrill.

Balinski, Michel, and Rida Laraki. 2010. Majority Judgment. USA: MIT Press.

Baum, S. D. 2017. "Social Choice Ethics in Artificial Intelligence." AI & Society. doi:https://doi.org/10.1007/s00146-017-0760-1.

Ben-Yashar, Ruth, and Sarit Kraus. 2002. "Optimal collective dichotomous choice." Economic Theory 839-852.

Binmore, Ken. 1994. Playing Fair. Cambridge: MIT Press.

Blau, Julian H. 1975. "Liberal Values and Independence." Review of Economic Studies 395–401.

Bostrom, Nick. 2014. Superintelligence. Oxford: Oxford University Press.

Brams, Steven J., and Alan D. Taylor. 1995. "An Envy-Free Cake Division Protocol ." American Mathematical Monthly 9-18.

Brams, Steven J., and D. Marc Kilgour. 2014. "When Does Approval Voting Make the 'Right Choices'?" In The Mathematics of Decisions, Elections, and Games, by Karl-Dieter Crisman and Michael A. Jones, 37-54. USA: American Mathematical Society.

Brams, Steven J., and Peter C. Fishburn. 1983. Approval Voting. Boston: Birkhauser.

Brams, Steven J., and Richard Potthoff. 2015. "The Paradox of Grading Systems." Public Choice 193-210.

Brandt, Felix, Vincent Conitzer, Ulle Endriss, and Ariel D. Procaccia. 2016. Handbook of Computational Social Choice. New York: Oxford University Press.

Center for Applied Rationality. n.d. Center for Applied Rationality. https://www.rationality.org.

Center for Election Science. n.d. "Who Uses Approval Voting?" Center for Election Science. Accessed July 18, 2017. http://electology.org/article/progress.

Cohn, Ariel. 2017. "How Do We Align Artificial Intelligence with Human Values? ." Future of Life Institute. February 3. Accessed November 19, 2017. https://futureoflife.org/2017/02/03/align-artificial-intelligence-with-human-values/.

Condorcet, Marie Jean Antoine Nicolas Caritat. 1955. Sketch for a Historical Picture of the Progress of the Human Mind. London: Weidenfeld & Nicolson.

Conitzer, Vincent, Walter Sinnott-Armstrong, Jana Schaich Borg, Yuan Deng, and Max Kramer. 2017. "Moral decision making frameworks for artificial intelligence." Proceedings of the 31st AAAI Conference on Artificial Intelligence . AAAI. 4831-4835.

Dahl, Robert A. 1989. Democracy and Its Critics. New Haven: Yale University Press.

Gibbard, Allan. 1973. "A Pareto-consistent libertarian claim." Journal of Economic Theory 388-410.

Gibbard, Allan. 1977. "Manipulation of Schemes that Mix Voting with Chance." Econometrica 665-681.

Gibbard, Allan. 1990. Wise Choices, Apt Feelings. Cambridge: Harvard University Press.

Good Judgment Project. n.d. Good Judgment Project. https://www.goodjudgment.com.

Goodin, Robert, and Christian List . 2006. "A Conditional Defense of Plurality Rule." American Journal of Political Science 940-949.

Greene, Joshua, Francesca Rossi, John Tasioulas, Kristen Brent Venable, and Brian Williams. 2016. "Embedding Ethical Principles in Collective Decision Support Systems." Proceedings of the 30th AAAI Conference on Artificial Intelligence. AAAI. 4147-4151.

Grofman, Bernard, and Scott L. Feld. 1988. "Rousseau's General Will: A Condorcetian Perspective." American Political Science Review 567-576.

Hampton, Jean. 1986. Hobbes and the Social Contract Tradition. Cambridge: Cambridge University Press.
Harsanyi, John C. 1953. "Cardinal utility in welfare economics and in the theory of risk-taking." Journal of Political Economy 434-435.
Harsanyi, John C. 1955. "Cardinal Welfare, Individualistic Ethics, and Interpersonal Comparisons of Utility." Journal of Political Economy 309–321.
Hobbes, Thomas. 1651. Leviathan. Edited by Edward White and David Widger. Project Gutenberg. Accessed November 20, 2017. http://www.gutenberg.org/files/3207/3207-h/3207-h.htm.

Kavka, Gregory. 1986. Hobbesian Moral and Political Theory. Princeton: Princeton University Press.

Ladha, Krishna K. 1992. "The Condorcet Jury Theorem, Free Speech, and Correlated Votes ." American Journal of Political Science 617-634.

Landes, Joan. 2016. "The History of Feminism: Marie-Jean-Antoine-Nicolas de Caritat, Marquis de Condorcet." Stanford Encyclopedia of Philosophy. January 20. <https://plato.stanford.edu/archives/spr2016/entries/histfem-condorcet/>.

Laslier, Jean-Francois, and M. Remzi Sanver, . 2010. Handbook of Approval Voting. Berlin: Springer-Verlag Berlin Heidelberg.

List, Christian. 2013. "Social Choice Theory." Stanford Encyclopedia of Philosophy. December 18. Accessed June 27, 2017. https://plato.stanford.edu/entries/social-choice/.

List, Christian, and Robert E. Goodin. 2001. "Epistemic Democracy: Generalizing the Condorcet Jury Theorem." Journal of Political Philosophy 277-306.

Lukes, Steven, and Nadia Urbinati. 2012. Condorcet: Political Writings. Cambridge: Cambridge University Press.

May, Kenneth O. 1952. "A Set of Independent Necessary and Sufficient Conditions for Simple Majority Decision." Econometrica 680-684.

McLean, Iain, and Arnold B. Urken. 1995. Classics of Social Choice. Ann Arbor: University of Michigan.

McLean, Iain, and Fiona Hewitt. 1994. Condorcet: Foundations of Social Choice and Political Theory. Aldershot: Edward Elgar Publishing Limited.

Muehlhauser, Luke, and Louie Helm. 2012. "The Singularity and Machine Ethics." In Singularity Hypotheses, by A. H. Eden, J. H. Moor, J. H. Soraker and E. Steinhart, 101-126. Berlin: Springer-Verlag.

Muller, Eitan, and Mark A. Satterthwaite. 1977. "The equivalence of strong positive association and strategy-proofness ." Journal of Economic Theory 412-418.

Myerson, Roger B., and Robert J. Weber. 1993. "A Theory of Voting Equilibria." American Political Science Review 102-114.

Nagel, Jack H. 2007. "The Burr Dilemma in Approval Voting." Journal of Politics 43-58.

Noothigattu, Ritesh, Snehalkumar "Neil" S. Gaikwad, Edmond Awad, Sohan Dsouza, Iyad Rahwan, Pradeep Ravikumar, and Ariel D. Procaccia. 2017. "A Voting-Based System for Ethical Decision Making." ArXiv.org. September 20. Accessed November 11, 2017. https://arxiv.org/pdf/1709.06692.pdf.

Owen, Guillermo, Bernard Grofman, and Scott L. Feld. 1989. "Proving a Distribution-Free Generalization of the Condorcet Jury Theorem." Mathematical Social Sciences 1-16.

Owens, David. 2016. "Six Face Charges In Scheme To Manipulate Lottery Game." Hartford Courant. March 22. Accessed November 22, 2017. http://www.courant.com/breaking-news/hc-more-5-card-cash-arrests-0323-20160322-story.html.

Patty, John W., and Elizabeth Maggie Penn. 2014. Social Choice and Legitimacy. New York: Cambridge University Press.

Prasad, Mahendra. 2012. "Condorcet, Preference, and Judgment." 11th Meeting of the Society for Social Choice and Welfare. New Delhi.

Prasad, Mahendra. 2014. "Social Rank Ordering Functions and Arrow's Theorem." 12th Meeting of the Society for Social Choice and Welfare. Boston.
Prasad, Mahendra. 2017. "Are Condorcet Methods the Wrong Arrovian Generalization of Majority Rule?" Public Choice Society. New Orleans.

Prasad, Mahendra. 2017. "Back to the Future: A Framework for Modelling Altruistic Intelligence Explosions." The AAAI 2017 Spring Symposium on AI for the Social Good: Technical Report SS-17-01. Palo Alto: AAAI.
Rae, Douglas W. 1969. "Decision-rules and individual values in constitutional choice." American Political Science Review 40-56.

Rawls, John. 1999. A Theory of Justice. Cambridge: Harvard University Press.

Rothschild, Emma. 2001. Economic Sentiments: Adam Smith, Condorcet and the Enlightenment. Harvard University Press.

Sen, Amartya. 1970. "The Impossibility of a Paretian Liberal." Journal of Political Economy 152-157.

Simon, Herbert A. 1955. "A Behavioral Model of Rational Choice." Quarterly Journal of Economics 99-118.

Sloane, Neil J. A. n.d. Fubini numbers: number of preferential arrangements of n labeled elements; or number of weak orders on n labeled elements; or number of ordered partitions of [n]. https://oeis.org/A000670.

Smith , Tom, and Warren D. Smith. n.d. ""Burr's dilemma" flaw in Approval voting system ." Center for Range Voting. Accessed November 27, 2017. http://rangevoting.org/BurrSummary.html.
Smith, Warren D., ed. n.d. Center for Range Voting. https://www.rangevoting.org.

Taylor, Alan D. 2005. Social Choice and the Mathematics of Manipulation. New York: Cambridge University Press.

Taylor, Michael. 1969. "Critique and Comment: A Proof of a Theorem on Majority Rule." Behavioral Science 228-231.

Tetlock, Philip E., and Dan Gardner. 2015. Superforecasting. New York: Crown.

Verbeek, Bruno, and Christopher Morris. 2010. "Game Theory and Ethics." Stanford Encyclopedia of Philosophy. Summer. Accessed November 20, 2017. https://plato.stanford.edu/archives/sum2010/entries/game-ethics/.

Vickrey, William. 1961. "Counterspeculation, Auctions, and Competitive Sealed Tenders." Journal of Finance 8-37.

Wallach, Wendell, and Colin Allen. 2008. Moral Machines. New York: Oxford University Press.

Wallach, Wendell, Colin Allen, and Iva Smit. 2008. "Machine morality: bottom-up and top-down approaches for modelling human moral faculties." AI & Society 565-582.

Williams, David. 2004. Condorcet and Modernity. Cambridge: Cambridge University Press.

Young, H. P. 1988. "Condorcet's Theory of Voting." American Political Science Review 1231-1244.

Yudkowsky, Eliezer. 2004. "Coherent Extrapolated Volition." Machine Intelligence Research Institute. Accessed November 20, 2017. https://intelligence.org/files/CEV.pdf.

� This manuscript greatly benefitted from comments from Thomas Watson, Roman Yampolskiy, and three anonymous reviewers. All errors are those of the author.


� While social choice is traditionally viewed in the context of voting and elections in political situations, it is actually more general. For example, we can conceive of an election where the ballot each voter submits is some brain scan, and the voting system aggregates these brain scans to make a decision among some alternatives under consideration.


� An alternative x Pareto dominates an alternative y if at least one voter prefers x over y and no voter prefers y over x.


� The meaning of legitimacy is a much debated issue in political philosophy and a full discussion of its meaning is beyond the scope of this text. For our purposes, an entity is the legitimate agent of some principal if that principal voluntarily and freely accepts the authority of that entity to act on the principal’s behalf. A government or AI may have legitimacy concerns if a large proportion of the principals it serves do not view the agent as legitimate.   


� For our purposes, popular equality is the norm that the opinion of each person should be treated equally. State equality refers to the norm that the opinion of each state should be treated equally. Of course, the constitution in its original form did not respect popular equality in that women, slaves, and persons who did not own enough property did not have the right to vote.


� The idea of resolving ethical dilemmas with voting has a long history in political philosophy (McLean and Urken 1995). Perhaps its most famous exponent is the 18th century French philosopher, Jean-Jacques Rousseau.


� Experts in social choice will notice that these traditional social choice norms are decisiveness, anonymity, neutrality, and monotonicity (Noothigattu, et al. 2017, 4). We will define these terms in detail later in this chapter.


� We define IIA more formally later, but for now it suffices to say that IIA requires that for any alternatives x, y, and z, the mere introduction/removal of z to/from the set of alternatives being voted on should not affect the relative social rank ordering of x to y if voters do not change their individual preferences on x relative to y.


� In his Leviathan, Thomas Hobbes, the 17th century English philosopher, famously described the state as an “artificiall [sic] man” constructed through aggregating the consent of all the state’s citizens via a social contract (Hobbes 1651). Social contract theory, which was arguably started by Hobbes, contends that state legitimacy derives from consent of the people. The theory has been extended by John Locke, Jean-Jacques Rousseau, John Rawls, and many others. Examination of the social contract literature, especially attempts to formalize it via game theory like (Binmore 1994; Gibbard 1990; Hampton 1986; Harsanyi 1955; Kavka 1986; Verbeek and Morris 2010), may significantly assist development of ethics in an AI.


� The traditional example of an institutional nudge is to make retirement saving automatic via an opt-out status quo as opposed to an opt-in status quo which requires an individual to take action to save.


� Probate and estate law may give some guidance on measuring input from the dead if we wish to grant them some standing.


� The St. Petersburg paradox is a classic illustration of a potential problem in expected utility theory. The paradox was first introduced in the 18th century by Daniel and Nicolas Bernoulli.


� The maximax strategy calls for a player to choose an alternative which maximizes her utility in the best possible scenario. The minimax strategy requires a player to choose an alternative which maximizes her utility in the worst possible scenario.


� If a voter makes a complete and transitive preference order on n alternatives, then her preference order contains (n2-n)/2 paired comparisons, and all m voters together produce m(n2-n)/2 paired comparisons.


� A deterministic voting system is one which, given a particular input (e.g. a particular set of ballots from a particular set of voters), will always have the same output (e.g. a particular social rank ordering of alternatives). A non-deterministic voting system, for a given input, may have different outputs on different runs.  


� We could try to express this concern with a more subjective decision, but that would require development of a framework of what constitutes a bad decision, which is tangential to the current point. 


� Detailed description of voting as a game is beyond the scope of this paper. To learn more about voting as a game, see (Gibbard 1977) and (A. D. Taylor 2005).


� Experts in social choice will note that when the voting system outputs a single alternative or some subset of alternatives, such outputs can be interpreted as an ordinal rank ordering with two levels of preference.


� Technically, a total preorder is a binary relation which is reflexive, transitive, and total. Informally, a total preorder is a transitive rank ordering of all n alternatives.


� Typically in the literature, a social welfare function is allowed to always output a tie between all alternatives. However, for the sake of simplifying our later discussion of the relationship between Arrow’s theorem and May’s theorem, the requirement that a social welfare function not always output a tie between all alternatives is added to our definition.


� If there are n alternatives, and F(n) is the nth Fubini number, then F(n) is the total number of possible total preorders on n alternatives. Given there are m voters and n alternatives, there are [F(n)]m logically possible Arrovian profiles. For more on the Fubini numbers see (Sloane n.d.).  


� Arrow’s original version of the theorem focused on social welfare functions, while ours focuses on more general Arrovian voting systems that allow for variation in the set of alternatives under consideration.


� This monotonicity condition is a stronger version of Arrow’s positive association condition.


� This IIA is stronger than Arrow’s IIA.


� This is a slightly stronger version of Arrow’s non-dictatorship condition.


� By absolute majority rule tracks truth, we mean: If more voters determine a1 is true than determine it is not true, then a1 is more likely true than not true. Similarly, if more voters determine it is not true than determine it is true, then a1 is more likely not true than true. If an equal number of voters determine it is true as determine it is not true, then a1 has an equal likelihood of being true as it does of being not true.    


� Technically, approval voting is non-Arrovian because it allows the expression of information beyond a total preorder. For example, a voter is allowed to prefer x over y but approve of both.


� For a given (A, V), a given profile domain is least restrictive with respect to some condition or set of conditions if every other profile domain used to satisfy that condition or set of conditions is a proper subset of the given profile domain. A profile domain is a proper subset of a given profile domain if the set of profiles in a profile domain is a proper subset of the set of profiles in the given profile domain.


� An additional distinction to consider is whether a person A is envious of the utility person B derives from some particular good that B has, or is person A envious of the utility A would derive from the good if she was in possession of the good? 


� It is worth noting “Goodhart’s law”, which is the tendency that a measurement can stop being a good one when it becomes a goal. For example, if a particular measurement becomes the standard which decides who is an anti-sociopath who can vote on particular issues, people may game their behavior in a manner which makes the measurement a bad proxy for determining who is an anti-sociopath. There are historical examples of attempting to game who can and cannot vote. For example, literacy tests were used to prevent African-Americans from voting in US elections in the early 20th century (based on the assertion that voters who are literate make better choices), but grandfather clauses (which allowed persons to vote if their grandfather had voted) were used to allow illiterate Whites to vote (as African-Americans whose grandfathers could have been slaves would not be able to easily take advantage of this exemption).  
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